YiPing Li | Plants | Best Researcher Award

Professor at Northwest A&F University,  China

YiPing Li is a Professor at Northwest A&F University, specializing in sustainable agriculture and pest management. His research focuses on the interaction between insect midgut proteases and peritrophic membranes with host plants and Bt, as well as the green prevention and control technologies for pests affecting fruit trees, vegetables, edible fungi, and cotton. He has led multiple major research projects funded by the National Natural Science Foundation of China (NSFC) and other prominent organizations. His notable projects include studying peritrophic membrane proteins, pest control technologies, and monitoring techniques for fruit-eating worms. YiPing Li has made significant contributions to the field, including numerous publications in top journals and several patents. He has been recognized with awards such as the Shaanxi Provincial Science and Technology Progress Award and the Ministry of Agriculture China Agricultural Science and Technology Award. His work also extends to educational reforms, with numerous teaching achievements and published papers on the subject.

Profile:

🔬 Academic and Professional Background:

YiPing Li focuses on the interaction between insect midgut proteases and peritrophic membranes, and the green prevention and control of pests on various crops, including fruit trees, vegetables, edible fungi, and cotton.

🔍 Research and Innovations

  • NSFC Projects: Leading research on Bt synergism, midgut protease adaptation, and cotton bollworm resistance.
  • National Key Projects: Integration of technologies to reduce fertilizer and pesticide use in Xinjiang and Gansu.
  • Major Science and Technology Project: Studying pest occurrence patterns in apple and developing monitoring technologies.

🏆 Contributions & Awards:

Awarded for significant contributions to agricultural science, including the Shaanxi Provincial Science and Technology Progress Award and several teaching achievement awards.

📜 Editorial & Professional Memberships:

Active in the field of agricultural pest management, disaster mechanisms, and green technologies.

Research Focus: Plant

YiPing Li’s research primarily revolves around the interaction between insect pests and plants, with a special emphasis on:

  1. Insect Midgut Proteases and Peritrophic Membranes: Studying how these digestive enzymes and protective layers in insects interact with host plants and Bt (Bacillus thuringiensis) to develop effective pest control strategies.
  2. Pest Occurrence Patterns: Investigating the patterns and behaviors of pests on various crops including fruit trees, vegetables, edible fungi, and cotton, aiming to enhance green prevention and control technologies.
  3. Green Prevention and Control Technologies: Developing and integrating sustainable technologies to manage and mitigate pest impacts on plants, contributing to environmentally friendly agricultural practices.
  4. Adaptive Mechanisms of Midgut Proteases: Researching how midgut proteases adapt to different host plants and their potential as targets for pest control, focusing on pests like Grapholita molesta and cotton bollworm.

YiPing Li’s work is integral to advancing sustainable agriculture by improving pest management practices and reducing reliance on chemical controls.

Publication Top Notes:

  • “Trypsin‐encoding gene function of efficient star polycation nanomaterial‐mediated dsRNA feeding delivery system of Grapholita molesta”
    Pest Management Science
    July 5, 2024
    DOI: 10.1002/ps.8289
  • “Structural Characteristics of Mitochondrial Genomes of Eight Treehoppers (Hemiptera: Membracidae: Centrotinae) and Their Phylogenetic Implications”
    Genes
    July 24, 2023
    DOI: 10.3390/genes14071510
  • “Larval midgut protease activity of Illiberis pruni (Lepidoptera: Zygaenidae) feeding on multiple characteristic hosts”
    Phytoparasitica
    November 2022
    DOI: 10.1007/s12600-022-01019-w
  • “RNA Sequencing Reveals the Potential Adaptation Mechanism to Different Hosts of Grapholita molesta”
    Insects
    September 2022
    DOI: 10.3390/insects13100893
  • “Antibiotic Treatment Reduced the Gut Microbiota Diversity, Prolonged the Larval Development Period and Lessened Adult Fecundity of Grapholita molesta (Lepidoptera: Tortricidae)”
    Insects
    September 15, 2022
    DOI: 10.3390/insects13090838
  • “Comparison of Gut Bacterial Communities of Fall Armyworm (Spodoptera frugiperda) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    October 2021
    DOI: 10.3390/ijms222011266
  • “Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    June 25, 2021
    DOI: 10.3390/ijms22136843
  • “Enhanced hydrolysis of β‐cypermethrin caused by deletions in the glycin‐rich region of carboxylesterase 001G from Helicoverpa armigera”
    Pest Management Science
    April 2021
    DOI: 10.1002/ps.6242
  • “Geographic variation in sexual communication in the cotton bollworm, Helicoverpa armigera”
    Pest Management Science
    November 2020
    DOI: 10.1002/ps.5893
  • “The effect of host plant on the development and larval midgut protease activity of Plutella xylostella (Lepidoptera: Plutellidae)”
    Phytoparasitica
    September 1, 2019
    DOI: 10.1007/s12600-019-00746-x
  • “Ultrastructure of antennal sensilla of three fruit borers (Lepidoptera: Crambidae or Tortricidae)”
    PLOS ONE
    October 11, 2018
    DOI: 10.1371/journal.pone.0205604

 

 

Elham Soliman | Plant science | Women Researcher Award

Assist Prof Dr Elham Soliman |  Plant science |  Women Researcher Award

Helwan University faculty of science at  Helwan University, Egypt

Dr. Elham Riad Salama Soliman is dedicated to advancing scientific knowledge, focusing on plant molecular responses to environmental cues and their impact on growth and development. With a strong background in molecular identification and genetic characterization, she employs bioinformatics tools to analyze molecular data.

Profile

Education:

Ph.D. in Molecular Biology (2009-2014), Faculty of Biological Science, Leeds University, UK. Research: Arabidopsis promoter mechanisms and tissue-stress responsiveness. M.Sc. in Cytology and Genetics (2003-2007), Faculty of Science, Helwan University, Egypt. Research: Effects of mycorrhiza and Rhizobium biofertilizers on Vicia faba. B.Sc. in Chemistry and Botany (1998-2002), Faculty of Science, Helwan University, Egypt.

Work Experience:

Lecturer (2014-present), Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt. Responsibilities include teaching, supervising research, and coordinating quality assurance. General Quality Assurance Coordinator (2015-present), Faculty of Science, Helwan University, Egypt. Voluntary Postdoctoral Researcher (2014), Faculty of Biological Science, University of Leeds, UK. Focused on transgenic Arabidopsis lines. Assistant Lecturer (2007-2014) and Demonstrator (2002-2007), Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt.

Skills:

Laboratory techniques: Gene expression analysis, PCR, DNA methylation, characterization of Arabidopsis plants, and various molecular techniques. Bioinformatics: Data analysis using Clone Manager, Gel Documentation System, WASABI, and other software. Teaching: Expertise in practical genetics, molecular biology, and plant biotechnology.

Research Interests:

  • Plant growth and development under environmental stress
  • Epigenetic mechanisms and stress-induced memory
  • Gene signaling pathways and transgenic plants
  • Application of nanotechnology in biology

Academic Awards and Activities:

  • Awarded at Multi-theme Hackathon on climate change (2022)
  • Participated in various conferences and workshops on molecular biology, biotechnology, and nanotechnology
  • Jury member for INTEL ISEF science and engineering fairs

Professional Memberships:

  • Academic staff member, Faculty of Science, Helwan University
  • Member, Syndicate of Scientific Professions, Egypt

Research Focus: Plant science

Dr. Elham Riad Salama Soliman’s research in plant science is centered on understanding how plants respond to environmental stresses at the molecular level and utilizing this knowledge for practical applications. Her primary areas of focus include:

  1. Plant Molecular Responses to Environmental Stress: Investigating how various environmental factors affect plant molecular mechanisms, growth, and development. This includes studying stress-responsive genes and pathways.
  2. Epigenetic Mechanisms: Exploring how epigenetic modifications, such as DNA methylation, influence gene expression in response to environmental stresses. This involves understanding gene silencing, activation, and stress-induced memory.
  3. Transgenic Plants: Developing genetically modified plants with enhanced resistance to environmental stresses. This research aims to improve crop resilience and productivity under adverse conditions.
  4. Bioinformatics in Plant Science: Utilizing bioinformatics tools to analyze molecular data, including gene expression profiles and genetic variations. This helps in identifying key genes and pathways involved in stress responses.
  5. Nanotechnology Applications: Applying nanotechnology to advance plant science research, including the development of nanomaterials and techniques for enhancing plant growth and stress tolerance.
  6. Plant Biotechnology: Employing molecular techniques and genetic engineering to improve plant traits and develop new biotechnological applications for agriculture.

Dr. Soliman’s work integrates these areas to contribute to the advancement of plant science, with a focus on improving crop resilience and understanding the complex interactions between plants and their environment.

Publication Top Notes:

  • Enhancing Drought Tolerance in Malva parviflora Plants Through Metabolic and Genetic Modulation Using Beauveria bassiana Inoculation
    • Journal: BMC Plant Biology
    • Date: July 11, 2024
    • DOI: 10.1186/s12870-024-05340-w
    • Contributors: Reda E. Abdelhameed, Elham R. S. Soliman, Hanan Gahin, Rabab A. Metwally
    • Summary: This study explores the use of the fungal inoculant Beauveria bassiana to enhance drought tolerance in Malva parviflora, focusing on both metabolic and genetic responses.
  • Costly Effective Bioleaching of Valuable Metals from Low-Grade Ore Using Aspergillus nidulans
    • Journal: International Journal of Environmental Science and Technology
    • Date: March 2024
    • DOI: 10.1007/s13762-023-05355-0
    • Contributors: B. M. Ahmed, A. A. Mohammed, N. A. Kawady, I. E. Elaasy, E. R. S. Soliman
    • Summary: This article investigates the use of Aspergillus nidulans for bioleaching valuable metals from low-grade ore, emphasizing cost-effective approaches.
  • Preserving the Adaptive Salt Stress Response Activity of a Tissue-Specific Promoter with Modulating Activity
    • Journal: Journal of Genetic Engineering and Biotechnology
    • Date: March 2024
    • DOI: 10.1016/j.jgeb.2024.100354
    • Contributors: Elham R. S. Soliman
    • Summary: This research focuses on maintaining the salt stress response activity of a tissue-specific promoter, with implications for genetic engineering and stress tolerance.
  • Biological Control of Pepper Soft Rot Disease Caused by Pectobacterium carotovorum Using Rahnella aquatilis
    • Journal: Egyptian Journal of Botany
    • Date: January 1, 2024
    • DOI: 10.21608/ejbo.2023.248458.2566
    • Contributors: Kareem A. Abdelmeguid, Elham R. S. Soliman, Marwa A. Hamada, Hoda H. El-Hendawy
    • Summary: This paper evaluates the use of Rahnella aquatilis for controlling pepper soft rot disease, highlighting biological control strategies.
  • Antagonistic Activity of Bacillus atrophaeus (MZ741525) Against Some Phytopathogenic Microorganisms
    • Journal: Egyptian Journal of Botany
    • Date: 2023
    • DOI: 10.21608/EJBO.2022.161144.2133
    • Contributors: Korany, Shereen M.; El-Hendawy, Hoda H.; Soliman, Elham R. S.; Elsaba, Yasmin M.
    • Summary: This article investigates the antagonistic properties of Bacillus atrophaeus against various phytopathogenic microorganisms.
  • Rapid and Efficient DNA Extraction Method from High Oily Content Seeds
    • Journal: Acta Agriculturae Slovenica
    • Date: December 13, 2023
    • DOI: 10.14720/aas.2023.119.4.16094
    • Contributors: Elham R. S. Soliman
    • Summary: This paper presents a novel method for extracting DNA from seeds with high oil content, aimed at improving molecular analysis.
  • Partial Genome Detection, Characterization of TYLCV (MZ546492) Infecting Tomato Plants and siRNA Sequences Detection for Alternative Control Strategy
    • Journal: Egyptian Journal of Botany
    • Date: September 20, 2023
    • DOI: 10.21608/ejbo.2023.208980.2321
    • Contributors: Hager Abd ElRahman, Mohamed A. Nasr-Eldin, Sabah A. Abo-Elmaaty, Mohamed A. Abdelwahed, Mahmoud ElHefnawi, Asmaa M. ElFiky, Elham R. S. Soliman
    • Summary: This study focuses on the genome detection and characterization of Tomato Yellow Leaf Curl Virus (TYLCV) and explores siRNA sequences for potential control strategies.